National Semiconductor

## 54F/74F257A Quad 2-Input Multiplexer with TRI-STATE® Outputs

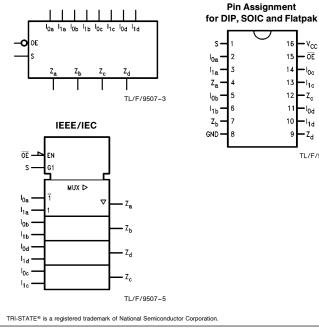
#### **General Description**

Features

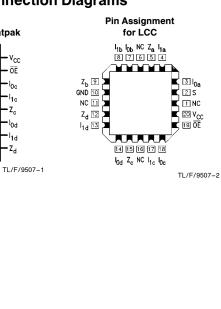
- Multiplexer expansion by tying outputs together
- The 'F257A is a quad 2-input multiplexer with TRI-STATE outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (OE) input, allowing the outputs to interface directly with bus-oriented systems.
- Non-inverting TRI-STATE outputs
- Input clamp diodes limit high-speed termination effects ■ Guaranteed 4000V minimum ESD protection

| Commercial         | Military           | Package<br>Number | Package Description                               |
|--------------------|--------------------|-------------------|---------------------------------------------------|
| 74F257APC          |                    | N16E              | 16-Lead (0.300" Wide) Molded Dual-In-Line         |
|                    | 54F257ADM (Note 2) | J16A              | 16-Lead Ceramic Dual-In-Line                      |
| 74F257ASC (Note 1) |                    | M16A              | 16-Lead (0.150" Wide) Molded Small Outline, JEDEC |
| 74F257ASJ (Note 1) |                    | M16D              | 16-Lead (0.300" Wide) Molded Small Outline, EIAJ  |
|                    | 54F257AFM (Note 2) | W16A              | 16-Lead Cerpack                                   |
|                    | 54F257ALL (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |

16


15

1


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

## Logic Symbols



## **Connection Diagrams**



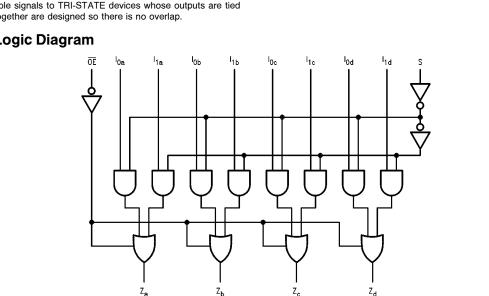
© 1995 National Semiconductor Corporation TL/F/9507

RRD-B30M75/Printed in U. S. A.

November 1994

#### Unit Loading/Fan Out

|                                  |                                            | 54F/74F          |                                                                                   |  |  |
|----------------------------------|--------------------------------------------|------------------|-----------------------------------------------------------------------------------|--|--|
| Pin Names                        | Description                                | U.L.<br>HIGH/LOW | Input I <sub>IH</sub> /I <sub>IL</sub><br>Output I <sub>OH</sub> /I <sub>OL</sub> |  |  |
| S                                | Common Data Select Input                   | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |  |  |
| OE                               | TRI-STATE Output Enable Input (Active LOW) | 1.0/1.0          | 20 µA/ −0.6 mA                                                                    |  |  |
| I <sub>0a</sub> -I <sub>0d</sub> | Data Inputs from Source 0                  | 1.0/1.0          | 20 µA/ −0.6 mA                                                                    |  |  |
| I <sub>1a</sub> -I <sub>1d</sub> | Data Inputs from Source 1                  | 1.0/1.0          | 20 µA/ −0.6 mA                                                                    |  |  |
| Z <sub>a</sub> -Z <sub>d</sub>   | TRI-STATE Multiplexer Outputs              | 150/40 (33.3)    | -3 mA/24 mA (20 mA)                                                               |  |  |


#### **Functional Description**

The 'F257A is a quad 2-input multiplexer with TRI-STATE outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the  $I_{0x}$  inputs are selected and when Select is HIGH, the  $I_{1x}$  inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

 $\mathsf{Z}_n = \overline{\mathsf{OE}} \bullet (\mathsf{I}_n \bullet \mathsf{S} + \mathsf{I}_{on} \bullet \overline{\mathsf{S}})$ 

When the Output Enable input ( $\overline{OE}$ ) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so there is no overlap.

#### Logic Diagram



### **Truth Table**

| Output<br>Enable | Select<br>Input | Data<br>Inputs |                | Output |
|------------------|-----------------|----------------|----------------|--------|
| ŌE               | S               | I <sub>0</sub> | I <sub>1</sub> | z      |
| Н                | х               | x              | х              | Z      |
| L                | н               | X              | L              | L      |
| L                | н               | X              | н              | н      |
| L                | L               | L              | Х              | L      |
| L                | L               | н              | Х              | н      |

TL/F/9507-4

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

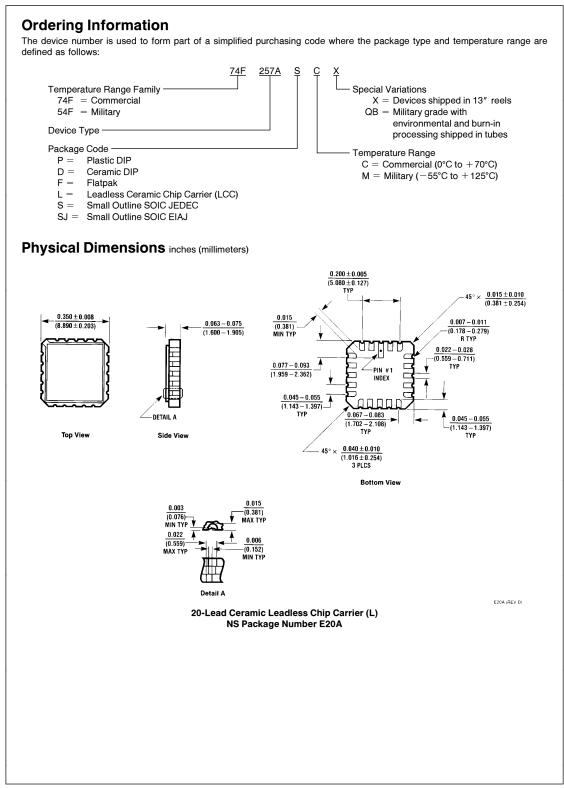
### Absolute Maximum Ratings (Note 1)

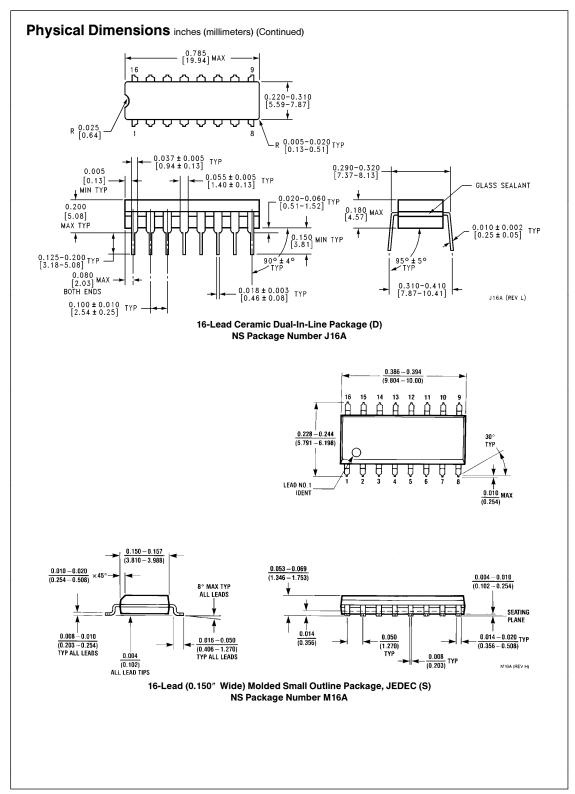
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

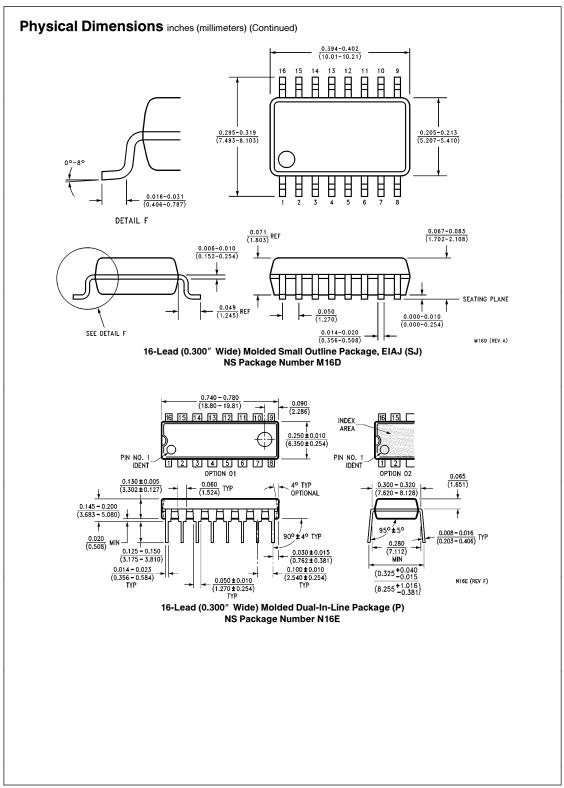
| Storage Temperature                                              | -65°C to +150°C                    |  |
|------------------------------------------------------------------|------------------------------------|--|
| Ambient Temperature under Bias                                   | -55°C to +125°C                    |  |
| Junction Temperature under Bias<br>Plastic                       | −55°C to +175°C<br>−55°C to +150°C |  |
| $V_{CC}$ Pin Potential to                                        |                                    |  |
| Ground Pin                                                       | -0.5V to +7.0V                     |  |
| Input Voltage (Note 2)                                           | -0.5V to $+7.0V$                   |  |
| Input Current (Note 2)                                           | -30 mA to $+5.0$ mA                |  |
| Voltage Applied to Output<br>in HIGH State (with $V_{CC} = 0V$ ) |                                    |  |
| Standard Output                                                  | -0.5V to V <sub>CC</sub>           |  |
| TRI-STATE Output                                                 | -0.5V to $+5.5V$                   |  |
| Current Applied to Output<br>in LOW State (Max)                  | twice the rated IOI (mA)           |  |
| ( )                                                              | 021                                |  |
| ECD Last Dessing Valtage (Min)                                   | 4000\/                             |  |

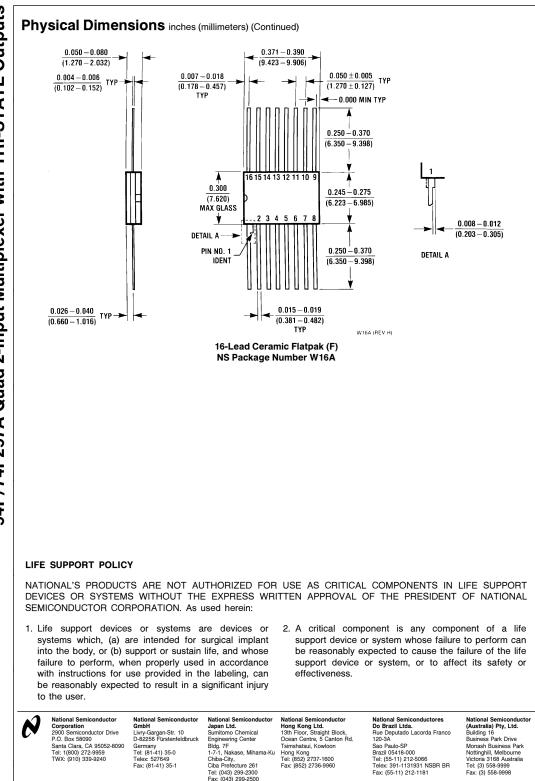
# Recommended Operating Conditions

Free Air Ambient Temperature


#### ESD Last Passing Voltage (Min) 4000V Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


#### **DC Electrical Characteristics**


| Symbol           | Parameter                            |                                                                                                                                                              | 54F/74F                                |      |             | Units | Vcc  | Conditions                                           |  |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-------------|-------|------|------------------------------------------------------|--|
| oymbol           | i arame                              |                                                                                                                                                              | Min                                    | Тур  | Max         |       | •00  |                                                      |  |
| VIH              | Input HIGH Voltage                   |                                                                                                                                                              | 2.0                                    |      |             | V     |      | Recognized as a HIGH Signa                           |  |
| V <sub>IL</sub>  | Input LOW Voltage                    |                                                                                                                                                              |                                        |      | 0.8         | V     |      | Recognized as a LOW Signa                            |  |
| V <sub>CD</sub>  | Input Clamp Diode Vo                 | oltage                                                                                                                                                       |                                        |      | -1.2        | V     | Min  | $I_{IN} = -18 \text{ mA}$                            |  |
| V <sub>OH</sub>  | Output HIGH<br>Voltage               | 54F 10% V <sub>CC</sub><br>54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 5% V <sub>CC</sub><br>74F 5% V <sub>CC</sub> | 2.5<br>2.4<br>2.5<br>2.4<br>2.7<br>2.7 |      |             | V     | Min  |                                                      |  |
| V <sub>OL</sub>  | Output LOW<br>Voltage                | 54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub>                                                                                                           |                                        |      | 0.5<br>0.5  | v     | Min  | $I_{OL} = 20 \text{ mA}$<br>$I_{OL} = 24 \text{ mA}$ |  |
| IIH              | Input HIGH<br>Current                | 54F<br>74F                                                                                                                                                   |                                        |      | 20.0<br>5.0 | μΑ    | Max  | $V_{IN} = 2.7V$                                      |  |
| I <sub>BVI</sub> | Input HIGH Current<br>Breakdown Test | 54F<br>74F                                                                                                                                                   |                                        |      | 100<br>7.0  | μΑ    | Max  | V <sub>IN</sub> = 7.0V                               |  |
| ICEX             | Output HIGH<br>Leakage Current       | 54F<br>74F                                                                                                                                                   |                                        |      | 250<br>50   | μΑ    | Мах  | $V_{OUT} = V_{CC}$                                   |  |
| V <sub>ID</sub>  | Input Leakage<br>Test                | 74F                                                                                                                                                          | 4.75                                   |      |             | v     | 0.0  | $I_{ID} = 1.9 \ \mu A$<br>All Other Pins Grounded    |  |
| I <sub>OD</sub>  | Output Leakage<br>Circuit Current    | 74F                                                                                                                                                          |                                        |      | 3.75        | μΑ    | 0.0  | V <sub>IOD</sub> = 150 mV<br>All Other Pins Grounded |  |
| Ι <sub>ΙL</sub>  | Input LOW Current                    |                                                                                                                                                              |                                        |      | -0.6        | mA    | Max  | $V_{IN} = 0.5V$                                      |  |
| I <sub>OZH</sub> | Output Leakage Curre                 | ent                                                                                                                                                          |                                        |      | 50          | μΑ    | Max  | $V_{OUT} = 2.7V$                                     |  |
| I <sub>OZL</sub> | Output Leakage Curre                 | ent                                                                                                                                                          |                                        |      | -50         | μΑ    | Max  | $V_{OUT} = 0.5V$                                     |  |
| los              | Output Short-Circuit C               | Current                                                                                                                                                      | -60                                    |      | -150        | mA    | Max  | $V_{OUT} = 0V$                                       |  |
| I <sub>ZZ</sub>  | Bus Drainage Test                    |                                                                                                                                                              |                                        |      | 500         | μΑ    | 0.0V | $V_{OUT} = 5.25V$                                    |  |
| ICCH             | Power Supply Curren                  | t                                                                                                                                                            |                                        | 9.0  | 15          | mA    | Max  | V <sub>O</sub> = HIGH                                |  |
| I <sub>CCL</sub> | Power Supply Curren                  | t                                                                                                                                                            |                                        | 14.5 | 22          | mA    | Max  | $V_{O} = LOW$                                        |  |
| I <sub>CCZ</sub> | Power Supply Curren                  | t                                                                                                                                                            |                                        | 15   | 23          | mA    | Max  | V <sub>O</sub> = HIGH Z                              |  |

|                                      |                                                       | $74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$ |            |            | 54F<br>T <sub>A</sub> , V <sub>CC</sub> = Mil<br>C <sub>L</sub> = 50 pF |             | $74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$ |             | Units |
|--------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|------------|------------|-------------------------------------------------------------------------|-------------|-----------------------------------------------------|-------------|-------|
| Symbol                               | Parameter                                             |                                                                          |            |            |                                                                         |             |                                                     |             |       |
|                                      |                                                       | Min                                                                      | Тур        | Мах        | Min                                                                     | Мах         | Min                                                 | Мах         | 1     |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>I <sub>n</sub> to Z <sub>n</sub> | 2.5<br>2.0                                                               | 4.5<br>4.2 | 5.5<br>5.5 | 2.0<br>1.5                                                              | 7.0<br>7.0  | 2.0<br>2.0                                          | 6.0<br>6.0  | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>S to Z <sub>n</sub>              | 4.0<br>2.5                                                               | 5.0<br>6.5 | 9.5<br>7.0 | 3.5<br>2.5                                                              | 11.5<br>9.0 | 3.5<br>2.5                                          | 10.5<br>8.0 | ns    |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output Enable Time                                    | 2.0<br>2.5                                                               | 5.9<br>5.5 | 6.0<br>7.0 | 2.0<br>2.5                                                              | 8.0<br>9.0  | 2.0<br>2.5                                          | 7.0<br>8.0  | nc    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Output Disable Time                                   | 2.0<br>2.0                                                               | 4.3<br>4.5 | 6.0<br>6.0 | 2.0<br>2.0                                                              | 7.0<br>8.5  | 2.0<br>2.0                                          | 7.0<br>7.0  | - ns  |









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.